
Theor Chim Acta (1986) 69:101-106 

�9 Springer-Verlag 1986 

An ab initio CI study on the rotational barrier of the allyl 
anion 

Remedios Gonzfilez-Luque, Ignacio Nebot-Gil, Manuela Merchfin, and Francisco 
Tomfis 

Departamento de Qu/mica Ffsica, Cfitedra de Qufmica General, Facultad de Ciencias Qu/micas, 
Universidad de Valencia, Burjassot (Valencia), Spain 

(Received January 8, revised October 21/Accepted November 7, 1985) 

All-electron and pseudopotential  non-empirical calculations have been 
performed on C2~ and C, (syn, anti) allyl anion conformations. Using a 
double-zeta valence-shell basis set within the Epstein-Nesbet  definition of 
the unperturbed Hamiltonian, a value about 19 kcal /mol  is found for the 
barrier to rotation of the allyl anion. This value is the theoretical value obtained 
with greater accuracy, and the lowest one for the rotational barrier. 
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Introduction 

The allyl anion is the simplest ~--delocalized carbanion and consequently has 
been the subject of many theoretical studies, especially concerned with the 
rotational barrier [1-7], using either semiempirical or ab initio approaches and 
different basis sets. Allylic resonance is a problem of actual interest owing to its 
implication in many problems of current chemical significance, and so, very 
recent work is available [8-12]. 

When a methyl group of the allyl anion is twisted 90 ~ around a C - C  bond in the 
C2~ allyl anion, I, (see Fig. 1), and pyramidalization is allowed, a syn, II,  or anti, 
I II ,  conformation of the allyl anion belonging to the C~ symmetry is formed, and 
the electronic barrier between a Cs type structure and the C2~ form can be related 
to the zr resonance energy. 
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As far as we know, the M P 2 / 4 - 3 1  + G  value of 22.2 kcal/mol [7] is the lowest 
theoretical value for the rotational barrier of the allyl anion, and the value of 
18 kcal/mol for the allylcesium complex in THF [13] has been experimentally 
evidenced as the lower limit to the rotational barrier of allyl anion in solution. 
In this work, we present an ab initio study which includes correlation energy 
and improved geometries in order to make closer the theoretical and experimental 
values of the rotational barrier of the allyl anion. 

Calculations 

Geometry optimization at 6-31G level [14] was performed by using the FORCE 
program [15] linked to the GAUSSIAN 70 series of programs [16]. Single point 
6-31G** [17] and 6 -31+G [7] calculations at 6-31G optimum geometries were 
done with the HONDO program [18]. The PSHONDO algorithm [19], which 
includes the pseudopotentials of Durand and Barthelat [20, 21] in the HONDO 
program, was used to carry out valence-shell SCF calculations, with the pseudo- 
potential parameters and properly optimized basis set for carbon atom [22]. The 
primitive functions were contracted to a double-zeta (DZ) level by a 3+ 1 
procedure, as in [6]. 

CI calculations were done with the CIPSI formalism [23], where the more 
important configurations are treated variationally (DIAG.), and the less important 
perturbationally with the RSPT and either Epstein-Nesbet [24,25] (EN) or 
Moller-Plesset [26] (MP) partitions of the unperturbed Hamiltonian. The 
configurations with a EN coefficient in the first-order wavefunction greater than 
or equal to 0.015 were included in the variational subspace. Typically, the norm 
of  the first order MP correction to the wavefunction is roughly 0.09 in all the cases. 

Results and discussion 

The 6-31G optimum geometries of conformations I - I I I  are summarized in Table 
1, according to the numbering in Fig. 1, and in Table 2 total and relative energies 
obtained from the all-electron and valence-shell calculations are shown. All basis 
sets give the syn more stable than the anti isomer, and therefore, the rotational 
barrier can be obtained by the energy difference between structures I and II. 
From Table 2 can be concluded that the inclusion of polarization functions on 
carbon and hydrogen atoms reduces appreciably the barrier height, however, 
diffuse functions does not affect it. Also, the DZ valence-shell basis set gives a 
lower energy barrier than the split-valence 6-31G basis set. Our findings at SCF 
level are in good agreement with previous calculations [5, 7]. 

Table 3 shows the CI results. As it can be readily seen, a value of about 19 kcal/mol 
for the rotational barrier of the allyl anion is obtained with the EN partition, in 
very good agreement with the expected result and the estimated experimental 
value [13]. Since the EN partition includes all the second order and part of all 
the higher than second orders of the M P  partition [25], and since in this case 
there are not N-dependence problems [27, 28], it can be concluded that our EN 
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Fig. 1. Allyl anion conformations: C2~ allyl anion, I; syn allyl anion, II; and anti allyl anion, III. In 
the structures II and III, a is the pyramidalization angle between the line bisecting the H(4)C(3)H(5) 
angle and the C(2)C(3) bond 

Table 1. Optimal geometrical parameters for allyl anion structures, (6-31G). 
Bond length in Angstroms and angles in degrees 

Conformation 

Parameter I II III 

C(1)C(2) 1.385 1.336 1.339 
C(2)C(3) 1.385 1.509 1.518 
C(I)H(1) 1.080 1.082 1.079 
C(1)H(2) 1.079 1.076 1.083 
C(2)H(3) 1.091 1.105 1.095 
C(3)H(4) 1.080 1.111 1.106 
C(3)H(5) 1.079 1.11 l 1.106 
C(1)C(2)C(3) 133.0 125.5 130.6 
H(3)C(2)C(1) 113.5 113.3 113.4 
H(1)C(I)C(2) 122.0 119.8 121.5 
H(2)C(1)C(2) 121.2 122.9 122.6 
H(4)C(3)C(2) 122.0 107.4 108.2 
H(5)C(3)C(2) 121.2 107.4 108.2 
H(4)C(3)C(5) 116.8 104.2 105.6 
~a 119.2 121.1 

apyramidalization angle (see Fig. 1) 
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result represents the most accurate theoretical approach to the experimental value 
of this rotational barrier. 

By inspection of  Tables 2 and 3 it can be deduced that a large amount of the 
correlation energy is due to angular correlation. Barrier heights for EN and 
6-31G** calculations differ only 1.9kcal/mol. The inclusion of polarization 
functions retrieves 4.6 kcal/mol while the inclusion of correlation decreases 
5.1 kcal/mol the energy barrier value. Therefore, if the effects of inclusion of 
polarization functions and correlation were additive, as has been previously found 
in other systems [29], the computed barrier could well drop to 15-16 kcal/mol. 
In sum, correlation energy and a more flexible basis set provide the value of 
19.3 kcal/mol as the lowest theoretical value of the allyl anion. If a greater 
accuracy is desired, the geometry optimization of the planar and twisted confor- 
mations at CI level might be taken into account, along with the inclusion of 
polarization functions in the basis set to improve the correlation energy conver- 
gence. 
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